PHYSICAL REVIEW D 86, 128501 (2012)

Comment on "Self-interacting Elko dark matter with an axis of locality"

Edmundo Capelas de Oliveira* and Waldyr Alves Rodrigues, Jr.[†]

Institute of Mathematics, Statistics and Scientific Computation, IMECC-UNICAMP,

13083-859 Campinas, São Paulo, Brazil

(Received 31 October 2012; published 28 December 2012)

In this comment we show that the statement in Ahluwalia *et al.* [Phys. Rev. D **83**, 065017 (2011)] that the existence of Elko spinor fields imply in an *axis of locality* is equivocated. The anticommutator $\{\Lambda(\mathbf{x}, t), \Pi(\mathbf{x}, t)\}$ is strictly local.

DOI: 10.1103/PhysRevD.86.128501 PACS numbers: 11.10.Lm, 11.30.Cp

I. THE INTEGRAL APPEARING IN THE PROPAGATOR

In Ref. [1] the authors calculated the propagator for an Elko spinor field supposed to satisfy the Klein-Gordon equation in Minkowski spacetime. They obtained a sum of two terms, the first being the usual propagator (fundamental solution) for a Klein-Gordon field and the second involves evaluation of the integral [see their Eq. (6.20)]

$$\int \frac{d^4p}{(2\pi)^4} e^{-ip_{\mu}(x'^{\mu}-x^{\mu})} \frac{i\boldsymbol{\varpi}}{p_{\mu}p^{\mu}-m^2+i\varepsilon} \mathcal{G}(\mathbf{p}). \tag{1}$$

The calculation is done in an inertial reference frame $\mathbf{e}_0 = \partial/\partial t$ with arbitrary spatial axes $\langle \mathbf{e}_1 = \frac{\partial}{\partial x}, \mathbf{e}_2 = \frac{\partial}{\partial y}, \mathbf{e}_3 = \frac{\partial}{\partial z} \rangle$ chosen in such a way that together with \mathbf{e}_0 defines a global orthonormal tetrad in Minkoswki spacetime. We next introduce spherical coordinates associated with the selected orthonormal triad $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ and write

$$\mathbf{p} = (r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta).$$

Then²

$$G(\mathbf{p}) := \gamma^5 \gamma^\mu n_\mu, \tag{2}$$

where the spacelike vector field $n=n^{\mu}\mathbf{e}_{\mu}$ is

$$n_{\mu} := (0, \mathbf{n}),$$

$$\mathbf{n} := \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \left(\frac{\mathbf{p}}{|\mathbf{p}|} \right) = (-\sin \varphi, \cos \varphi, 0).$$

Then the authors claim:

If there is no preferred direction, and since we are integrating over all momenta, we are free to choose a coordinate system in which $\mathbf{x}' - \mathbf{x}$ lies in the \hat{z} direction. In this special case, the $\mathbf{p} \cdot (\mathbf{x}' - \mathbf{x})$ depends only on

 $p(=|\mathbf{p}|)$ and θ , but not on φ . Thus, the only φ -dependence in the whole integrand comes from G which depends on φ in such a manner that an integral over one period vanishes.

Remark I.—It is very important to remark that if this integral would result as non-null, the fundamental solution for the Klein-Gordon operator would have an additional term, something that obviously cannot be the case.

II. THE INTEGRAL OF G(p)

On the other hand in Ref. [4] authors calculated the anticommutator of an Elko spinor field with its canonical momentum getting their Eq. (42), i.e.,

$$\{\Lambda(\mathbf{x},t),\Pi(\mathbf{x},t)=i\delta(\mathbf{x}-\mathbf{x}')\mathbb{I}+i\int\frac{d^3p}{(2\pi)^3}e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{x}')}\mathcal{G}(\mathbf{p}).$$
(3)

There they claim:

"Since the integral on the right hand side of Eq. (42) vanishes only along the $\pm \hat{z}_e$ axis, the preferred axis also becomes the axis of locality."

Let us examine if that claim is correct. Call $|\mathbf{x} - \mathbf{x}'| = \Delta$, and put

$$(\mathbf{x} - \mathbf{x}') = \Delta(\sin\theta_{\Delta}\cos\varphi_{\Delta}, \sin\theta_{\Delta}\sin\varphi_{\Delta}, \cos\theta_{\Delta}). \tag{4}$$

Calculation of the integral in the second member of Eq. (3) resumes in the calculation of the following integrals³

$$\mathbf{J}(\Delta) = \int_0^\infty dr r^2 \int_0^\pi d\theta \sin\theta \int_0^{2\pi} d\varphi e^{ir\Delta f(\theta,\theta_\Delta,\varphi,\varphi_\Delta)} \sin\varphi,$$
(5)

and

$$\mathbf{K}(\Delta) = \int_0^\infty dr r^2 \int_0^\pi d\theta \sin\theta \int_0^{2\pi} d\varphi e^{ir\Delta f(\theta,\theta_\Delta,\varphi,\varphi_\Delta)} \cos\varphi,$$
(6)

^{*}capelas@ime.unicamp.br

[†]walrod@ime.unicamp.br

¹In relativity theory reference frames are represented by timelike vector fields **Z** on the manifold modeling spacetime. In special relativity if *D* is the Levi-Civita connection of the Minkowski metric η , an inertial frame is a timelike vector field **I** such that $D\mathbf{I} = 0$. Details can be found, e.g., in Refs. [2,3].

²See also Eq. (31) in Ref. [4].

³We take $\Delta \neq 0$. For $\Delta = 0$ it is obvious that $\mathbf{J}(0) = \mathbf{K}(0) = 0$.

with $f(\theta, \theta_{\Delta}, \varphi, \varphi_{\Delta}) = \sin\theta \cos\varphi \sin\theta_{\Delta} \cos\varphi_{\Delta} + \sin\theta \sin\varphi \times \sin\theta_{\Delta} \sin\varphi_{\Delta} + \cos\theta \cos\theta_{\Delta}$.

We will now calculate the integrals in Eqs. (5) and (6) in the cases when $\mathbf{x} - \mathbf{x}'$ lies, respectively, in the \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 directions. We will call the respective integrals $\mathbf{J}_i(\Delta)$ and $\mathbf{K}_i(\Delta)$, for i = 1, 2, 3.

We start with the observation that it is trivial to verify that $\mathbf{J}_3(\Delta)=0$ and $\mathbf{K}_3(\Delta)=0$. To continue we calculate $\mathbf{J}_2(\Delta)$.

So, let us choose the spatial axis such that $(\mathbf{x} - \mathbf{x}') = \Delta \mathbf{e}_2 = \Delta(0, 1, 0)$ and perform the nontrivial exercise of calculating the value of the integral given by Eq. (5) in this case, i.e.,

$$\mathbf{J}_{2}(\Delta) = \int_{0}^{\infty} dr r^{2} \int_{0}^{\pi} d\theta \sin\theta \int_{0}^{2\pi} d\varphi \sin\varphi e^{ir\Delta \sin\theta \sin\varphi}. \tag{7}$$

We start evaluating the φ -integral,

$$\mathbf{\Omega}(\xi) = \int_0^{2\pi} d\varphi \sin\varphi e^{i\xi \sin\varphi},\tag{8}$$

where $\xi := r\Delta \sin\theta$. Observe that $\Omega(\xi) = -id\Lambda(\xi)/d\xi$ where (see 8.473-4, page 968 of Ref. [5])

$$\Lambda(\xi) = \int_0^{2\pi} d\varphi e^{i\xi \sin\varphi}$$

$$= 2 \int_0^{\pi} d\varphi \cos(r\Delta \sin\theta \sin\varphi)$$

$$= 2\pi J_0(r\Delta \sin\theta), \tag{9}$$

with J_0 the zero order Bessel function. So,

$$\Omega(\xi) = 2\pi i J_1(r\Delta \sin\theta),\tag{10}$$

where J_1 is the first-order Bessel function. Next we evaluate

$$\Xi(r,\Delta) = 2\pi i \int_0^{\pi} d\theta \sin\theta J_1(r\Delta \sin\theta). \tag{11}$$

Using the relation 6.681-8, page 739 of Ref. [5], namely

$$\int_0^{\pi} dx \sin(2\mu x) J_{2\nu}(2a \sin x) = \pi \sin(\mu \pi) J_{\nu-\mu}(a) J_{\nu+\mu}(a),$$
(12)

valid for $Re(\nu) > -1$ we see that identifying $2\mu = 1$, $2\nu = 1$, and $2a = r\Delta$ we can write

$$\Xi(r,\Delta) = 2\pi^2 i J_0 \left(\frac{r\Delta}{2}\right) J_1 \left(\frac{r\Delta}{2}\right). \tag{13}$$

So, putting $t = r\Delta/2$ we have

$$\mathbf{J}_{2}(\Delta) = \frac{16\pi^{2}i}{\Delta^{3}} \int_{0}^{\infty} dt t^{2} J_{0}(t) J_{1}(t). \tag{14}$$

Now, recall relation 6.626-3, page 715 of Ref. [5] (with $\beta = 1$), namely

$$\int_{0}^{\infty} dx e^{-2\alpha x} x J_{0}(x) J_{1}(x) = \frac{1}{2\pi} \left[\frac{K\left(\frac{1}{\sqrt{1+\alpha^{2}}}\right) - E\left(\frac{1}{\sqrt{1+\alpha^{2}}}\right)}{\sqrt{1+\alpha^{2}}} \right].$$
(15)

Then we see that

$$\mathbf{J}_{2}(\Delta) = -\frac{4\pi i}{\Delta^{3}} \lim_{\alpha \to 0} \frac{d}{d\alpha} \left[\frac{K\left(\frac{1}{\sqrt{1+\alpha^{2}}}\right) - E\left(\frac{1}{\sqrt{1+\alpha^{2}}}\right)}{\sqrt{1+\alpha^{2}}} \right]. \tag{16}$$

Recalling relations 8.113 and 8.114, page 905 of Ref. [5], we have for the elliptic functions K and E

$$K\left(\frac{1}{\sqrt{1+\alpha^2}}\right) = \frac{\pi}{2} {}_{1}F_{2}\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1+\alpha^2}\right),$$

$$E\left(\frac{1}{\sqrt{1+\alpha^2}}\right) = \frac{\pi}{2} {}_{1}F_{2}\left(-\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1+\alpha^2}\right),$$
(17)

where $_2F_1$ are Gauss hypergeometric functions. So,

$$\int_{0}^{\infty} dx e^{-2\alpha x} x J_{0}(x) J_{1}(x)$$

$$= \frac{1}{4} \left[\frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1+\alpha^{2}}\right) - {}_{2}F_{1}\left(-\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1+\alpha^{2}}\right)}{\sqrt{1+\alpha^{2}}} \right]$$
(18)

and to end our long calculation we must evaluate the limit when $a \rightarrow 0$ of

$$\frac{d}{d\alpha} \left[\frac{{}_{2}F_{1}(\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1+\alpha^{2}}) - {}_{2}F_{1}(-\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1+\alpha^{2}})}{\sqrt{1+\alpha^{2}}} \right].$$
(19)

Recalling that (see, e.g., page 281 of Ref. [6])

$$\frac{d}{dz}{}_{2}F_{1}(a,b;c;z) = \frac{ab}{c}{}_{2}F_{1}(a+1,b+1;c+1;z),$$

and that $_2F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!}$ (with $(a)_n$, $(b)_n$, $(c)_n$ the Pochhammer symbols) we see that we are justified in writing

$$\lim_{\alpha \to 0} \frac{d}{d\alpha} \left\{ \frac{{}_{2}F_{1}\left(\frac{1}{2},\frac{1}{2};1;\frac{1}{1+\alpha^{2}}\right)}{\sqrt{1+\alpha^{2}}} \right\}$$

$$= \lim_{\alpha \to 0} \left\{ \frac{-\alpha(1+\alpha^{2})^{-3/2} {}_{2}F_{1}\left(\frac{1}{2},\frac{1}{2};1;\frac{1}{1+\alpha^{2}}\right)}{-2\alpha(1+\alpha^{2})^{-5/2} {}_{2}F'_{1}\left(\frac{1}{2},\frac{1}{2};1;\frac{1}{1+\alpha^{2}}\right)} \right\} = 0. \quad (20)$$

Also,

$$\lim_{\alpha \to 0} \frac{d}{d\alpha} \left[(1 + \alpha^2)^{-1/2} {}_2 F_1 \left(-\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{1 + \alpha^2} \right) \right] = 0. \quad (21)$$

Finally, using Eqs. (20) and (21) in Eq. (16) we have that $\mathbf{J}_2(\Delta) = 0$.

We now evaluate

$$\mathbf{K}_{2}(\Delta) = \int_{0}^{\infty} dr r^{2} \int_{0}^{\pi} d\theta \sin\theta \int_{0}^{2\pi} d\varphi e^{ir\Delta \sin\theta \sin\varphi} \cos\varphi.$$
(22)

Calling $\mathbf{x} = \sin \varphi$ and $r\Delta \sin \theta = \alpha$ we see that (taking into account relation 3.715-9, page 401 of Ref. [5] with n = 1) we have

$$\int_{0}^{2\pi} d\varphi e^{ir\Delta \sin\theta \sin\varphi} \cos\varphi = \int_{-\pi}^{\pi} d\varphi e^{ir\Delta \sin\theta \sin\varphi} \cos\varphi$$

$$= -2 \int_{0}^{\pi} d\mathbf{x} \cos\varphi \cos(\mathbf{x} \sin\varphi)$$

$$= -2[1 + (-1)] \frac{\pi}{2} J_{1}(\mathbf{x}) = 0$$
(23)

and we conclude that $\mathbf{K}_2(\Delta) = 0$. We now evaluate $\mathbf{J}_1(\Delta)$ and $\mathbf{K}_1(\Delta)$. Observe that

$$\int_{0}^{2\pi} d\varphi \sin\varphi e^{ir\Delta \sin\theta \cos\varphi} = -\int_{-\pi}^{\pi} d\varphi \sin\varphi e^{ir\Delta \sin\theta \cos\varphi} = 0,$$
(24)

since the integrand is an odd function and the interval is symmetric. So, we have

$$\mathbf{J}_{1}(\Delta) = \int_{0}^{\infty} dr r^{2} \int_{0}^{\pi} d\theta \sin\theta \int_{0}^{2\pi} d\varphi \sin\varphi e^{ir\Delta \sin\theta \cos\varphi} = 0.$$
(25)

It remains to evaluate

$$\mathbf{K}_{1}(\Delta) = \int_{0}^{\infty} dr r^{2} \int_{0}^{\pi} d\theta \sin\theta \left[\int_{0}^{2\pi} d\varphi e^{ir\Delta \sin\theta \cos\varphi} \cos\varphi \right]. \tag{26}$$

Writing $x = ir\Delta \sin\theta$ and changing $\varphi \mapsto \varphi + \pi$ the integral in the brackets in Eq. (26) becomes $2\pi i J_1(r\Delta \sin\theta)$. When this is inserted in Eq. (26) and steps analogous to the ones used in the evaluation of $\mathbf{J}_2(\Delta)$ are used, we get $\mathbf{K}_1(\Delta) = 0$.

III. CONCLUSIONS

We have shown through explicitly and detailed calculation that the integral of $G(\mathbf{p})$ appearing in Eq. (42) of Ref. [4] is null for $\mathbf{x} - \mathbf{x}'$ lying in three orthonormal spatial directions in the rest frame of an arbitrary inertial frame $\mathbf{e}_0 = \partial/\partial t$.

This shows that no breakdown of locality concerning the anticommutator of $\{\Lambda(\mathbf{x}, t), \Pi(\mathbf{x}', t)\}$ and no preferred spacelike direction field in Minkowski spacetime is implied by the existence of Elko spinor fields.

ACKNOWLEDGMENTS

Authors acknowledge discussions with D. V. Ahluwalia, Roldão da Rocha, Jr., and J. Vaz, Jr.

D. V. Ahluwalia-Khalilova and D. Grumiller, J. Cosmol. Astropart. Phys. 07 (2005) 012.

^[2] W. A. Rodrigues, Jr. and E. Capelas de Oliveira, *The Many Faces of Maxwell, Dirac and Einstein Equations*, Lecture Notes in Physics Vol. 722 (Springer, Heidelberg, 2007).

^[3] R. K. Sachs and H. Wu, General Relativity for Mathematicians (Springer, New York, 1977).

^[4] D. V. Ahluwalia, C-Y. Lee, and D. Schritt, Phys. Rev. D 83, 065017 (2011).

^[5] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals Series and Products* (Academic, New York, 1965).

^[6] E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis*, (Cambridge University Press, Cambridge, England, 1927), 4th ed.