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In this comment we show that the statement in Ahluwalia e al. [Phys. Rev. D 83, 065017 (2011)]

that the existence of Elko spinor fields
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I. THE INTEGRAL APPEARING
IN THE PROPAGATOR

In Ref. [1] the authors calculated the propagator for an
Elko spinor field supposed to satisfy the Klein-Gordon
equation in Minkowski spacetime. They obtained a sum
of two terms, the first being the usual propagator (funda-
mental solution) for a Klein-Gordon field and the second
involves evaluation of the integral [see their Eq. (6.20)]
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The calculation is done in an inertial reference frame'
ey, = d/0t with arbitrary spatial axes (e,
;€3 = 32) chosen in such a way that together with e
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defines a global orthonormal tetrad in Minkoswki space-
time. We next introduce spherical coordinates associated
with the selected orthonormal triad (e, e,, e;) and write

p = (rsind cose, rsinf sing, r cosf).
Then?
Gp) =y’ y*n,, (2)

where the spacelike vector field n = n*e, is

n, = (0,mn),
1 9 /(p .
= 2 () = (= sing, cosg, 0).
ni=— 8§0<|p|) (— sing, cosg, 0)

Then the authors claim:

If there is no preferred direction, and since we are
integrating over all momenta, we are free to choose a
coordinate system in which x’ — x lies in the Z direction.
In this special case, the p - (x’ — x) depends only on
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'In relativity theory reference frames are represented by time-
like vector fields Z on the manifold modeling spacetime. In
special relativity if D is the Levi-Civita connection of the
Minkowski metric 1, an inertial frame is a timelike vector field
I such that DI = 0. Details can be found, e.g., in Refs. [2,3].

%See also Eq. (31) in Ref. [4].
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imply
The anticommutator {A(x, #), I1(x, 1)} is strictly local.
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in an axis of locality is equivocated.

PACS numbers: 11.10.Lm, 11.30.Cp

p(=|pl) and 6, but not on ¢. Thus, the only
¢-dependence in the whole integrand comes from G which
depends on ¢ in such a manner that an integral over one
period vanishes.

Remark I—It is very important to remark that if this
integral would result as non-null, the fundamental solution
for the Klein-Gordon operator would have an additional
term, something that obviously cannot be the case.

II. THE INTEGRAL OF G(p)

On the other hand in Ref. [4] authors calculated the
anticommutator of an Elko spinor field with its canonical
momentum getting their Eq. (42), i.e.,
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(A ), TI(x, 1} = i8(x — x)I + i [ 5
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There they claim:

“Since the integral on the right hand side of Eq. (42)
vanishes only along the *Z, axis, the preferred axis also
becomes the axis of locality.”

Let us examine if that claim is correct. Call |[x —x/| =A,
and put

(x —x’) = A(sinf, cos @y, sinfy singy, cosfy).  (4)

Calculation of the integral in the second member of
Eq. (3) resumes in the calculation of the following
integrals®

0 T 2 .
J(A) = f drr? f df sinf / dgeirs0.0s¢.00) ging,
0 0

0
®)
and
00 T 2T ,
K(A) = f drr? f df sinf f dee™0:020.05) cos g,
0 0 0
(6)

3We take A # 0. For A = 0 it is obvious that J(0)=K(0)=0.
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with  f(0,0, @, o) =sinfcossind s cose  + sinfsing X
sinf singp +cosfcosfy.

We will now calculate the integrals in Egs. (5) and (6) in
the cases when x — x/ lies, respectively, in the e, e,, and
e; directions. We will call the respective integrals J;(A)
and K;(A), fori =1, 2, 3.

We start with the observation that it is trivial to
verify that J3(A) = 0 and K;(A) = 0. To continue we
calculate J,(A).

So, let us choose the spatial axis such that (x — x/) =
Ae, = A(0, 1,0) and perform the nontrivial exercise of
calculating the value of the integral given by Eq. (5) in
this case, i.e.,

00 T 2 . . .
JQ(A)=f drrzf d9sin0/ dpsingeirAsindsing — (7)
0 0 0

We start evaluating the ¢-integral,

2 e
Q(¢) =[ dg singei¢ ¢, (8)
0
where £ := rAsinf. Observe that (&) = —idA(€)/dé
where (see 8.473-4, page 968 of Ref. [5])
2 e
A@) = [ dgeitsne
0
=2 /W d¢ cos(rA sinf sing)
0
= 27Jy(rA sinf), 9
with J, the zero order Bessel function. So,
O (&) = 27iJ,(rA sind), (10)

where J; is the first-order Bessel function. Next we

evaluate

E(r, A) = 2mi fo " d0sin6J,(rAsing).  (11)
Using the relation 6.681-8, page 739 of Ref. [5], namely
f( )’T dxsin(2ux) T, Qasiny) = wsin(u ), , (@), 1, (),

(12)

valid for Re(r) > —1 we see that identifying 2u = 1,
2v =1, and 2a = rA we can write

—_ o (rA rA
= (r, A) = 27721‘]0(7).]1(7) (13)
So, putting r = rA/2 we have
5(8) = 16” = [Carsono. o

Now, recall relation 6.626-3, page 715 of Ref. [5]
(with B8 = 1), namely
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/Ooo dxe 2] (x)J, (x) = % |:K( lloﬂ) - E( 11+a2)j|.

V1 + a?

(15)

Then we see that

A3 Oda 1/1_{_0[2

Recalling relations 8.113 and 8.114, page 905 of Ref. [5],
we have for the elliptic functions K and E

5(8) = — 47 [K<J$T)_E(m)] {16)

K(#) _ 7k (l 1.1.;)
Vitar) 202221+ (17)
E(é) _ Tk (_l 1.1.;)
Vi+tea2) 202\ 2722714
where , F| are Gauss hypergeometric functions. So,

foo dxe 2 xJo(x)J;(x)
0

_1|:2F (2 2’1’ﬁ>_2F1<_%’%;1;1+1“2)i| (18)

4 V1+ a?

4
and to end our long calculation we must evaluate the limit
when a — 0 of

i[zF (% é’lyl+a2) 2F(
da V1 + a?

Recalling that (see, e.g., page 281 of Ref. [6])

BT

b
dizzFl(a, b;c;z) = a?zFl(a +1,b+1;¢+1;2),

and that ,F,(a, b;c;z) = Y00 0(0) a(b), < (with (a),, (D),

(c), the Pochhammer symbols) we see that we are justified
in writing
11
limi (2 2’1’l+a>
a—0da V14 a
[ ali+ az)_3/22F1(%,%; 1 ;az)
=lim

=0 ~2a(1+a?) 92, Fy (L1 1)

Also,

1imi[(1 +a2)*‘/22F1(—

a—0da

11 1
——1;———=]1=0. (21
22 1+a2):| @D

Finally, using Eqgs. (20) and (21) in Eq. (16) we have that
J>(A) = 0.
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We now evaluate

] T 21 , . .
K,(A) =j drrzj do sinﬁf dpe™ snfsing cogep,
0 0 0
(22)
Calling x = sing and rA sinf = « we see that (taking

into account relation 3.715-9, page 401 of Ref. [5] with
n = 1) we have

2T irA sindsi T iFA sind si
dgoe” sinf sing cosp = d¢ezr sinf sing cosg
0 -

= -2 [w dx cos¢ cos(x sing)
0
= 21+ (=I5 7(x) =0
(23)

and we conclude that K,(A) = 0.
We now evaluate J;(A) and K;(A). Observe that

21

dosi irAsinfcosg — __ & d . irAsinfcose — 0
@singpe @singpe ,
-

(24)

since the integrand is an odd function and the interval is
symmetric. So, we have

PHYSICAL REVIEW D 86, 128501 (2012)

JI(A) = f drr2f d@smﬂ[ ng Sin¢eer51nﬁcosgo =(.
0 0 0

(25)

It remains to evaluate

00 T 27 . .
K1(A)=j;) drr2/;) dﬁsinﬁ[/; dpe'rAsindcose cosgo].

(26)
Writing x = irA sinf and changing ¢ — ¢ + 7 the inte-
gral in the brackets in Eq. (26) becomes 27iJ, (rA sind).
When this is inserted in Eq. (26) and steps analogous to

the ones used in the evaluation of J,(A) are used, we get

III. CONCLUSIONS

We have shown through explicitly and detailed calcu-
lation that the integral of G(p) appearing in Eq. (42) of
Ref. [4] is null for x — x’ lying in three orthonormal spatial
directions in the rest frame of an arbitrary inertial frame
€y — d / at.

This shows that no breakdown of locality concerning the
anticommutator of {A(x, 7), II(x/, )} and no preferred
spacelike direction field in Minkowski spacetime is
implied by the existence of Elko spinor fields.
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